
Introduc)on	to	P4	
Programming	Protocol-Independent	

Packets	Processors	
Ronald	van	der	Pol	

SURFnet	
(Ronald.vanderPol@rvdp.org)	

Programmable	Dataplanes	

•  Two	emerging	important	concepts:	
– Disaggrega)on	

•  De-coupling	of	switch/router	hardware	and	firmware	
•  Already	happening	with	white	label/bare	metal	1U	data	
centre	switches	

– Programmable	Dataplanes	
•  BUT	programmable	by	end-user/operator!	
• Well-known	example:	OpenFlow	
•  Next	step:	P4	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 2	

Disaggrega)on	

•  White	label/bare	metal	switch	vendors:	
– Quanta,	Accton/Edge-Core,	DNI/Agema,	Dell	
– Boot	firmware	via	ONIE	boot	loader	

•  So[ware/Firmware/(N)OS:	
– Pica8	PicOS	(L2/L3	&	OpenFlow)	commercial	
– Cumulus	(L2/L3)	commercial	
– Open	Network	Linux	(L2/L3	&	OpenFlow)	

• Work	in	Progress	
•  Open	Source	-	part	of	Open	Compute	Project	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 3	

Programmable	Dataplanes	

•  End-user/operator	has	full	access	to	
forwarding	pipeline	

•  OpenFlow	is	a	well	known	example	
•  OpenFlow	is	currently	supported	on	hardware	
switches	with	fixed	pipeline	ASICs	(inflexible/
limited	func)onality)	

•  P4	is	the	next	step	(create	parser,	lookup	
tables	and	pipeline	and	load	it	on	the	switch)	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 4	

P4	Targets	

•  Switch	with	programmable	silicon	(Barefoot?)	
•  NIC	with	programmable	silicon	(Netronome?)	
•  FPGA	switch	(Corsa	prototype)	
•  So[ware	switch	(P4	comes	with	ready	to	use	
reference	implementa)on)	

•  etc	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 5	

Why	is	this	important?	

•  Minimize		dependency	on	vendor	roadmaps	
•  Enhance	an	exis)ng	protocol	(e.g.	metering)	
•  Define	and	implement	a	new	protocol	(fast	
prototyping	on	real	hardware)	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 6	

P4: Programming Protocol-Independent

Packet Processors

Pat Bosshart

†

, Dan Daly

*
, Glen Gibb

†

, Martin Izzard

†

, Nick McKeown

‡

, Jennifer Rexford

**
,

Cole Schlesinger

**
, Dan Talayco

†

, Amin Vahdat

¶

, George Varghese

§

, David Walker

**

†

Barefoot Networks

*
Intel

‡

Stanford University

**
Princeton University

¶

Google

§

Microsoft Research

ABSTRACT
P4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version Date Header Fields

OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2 Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3 Jun 2012 40 fields

OF 1.4 Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-
plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ACM SIGCOMM Computer Communication Review 88 Volume 44, Number 3, July 2014

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 7	

P4	Language	Consor)um	

•  Two	board	members:	
– Nick	McKeown	(Stanford	University)	
–  Jennifer	Rexford	(Princeton	University)	

•  ~	32	industry	members	
•  ~	6	university	members	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 8	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 9	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 10	

P4	Switch	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	

I
N
P
U
T

Match
Action

Match
Action

O
U
T
P
U
T

Parse
Graph

Control
Program

Match+Action
Table Config

Ingress Egress

Switch Configuration

P4 Switch

P
A
R
S
E
R

Queues
and/or
Buffers

Source: The P4 Language Specification
Version 1.0.2

11	

P4	Eth	&	IPv4	Header	Defini)ons	

header_type	ethernet_t	{	
				fields	{	
								dstAddr	:	48;	
								srcAddr	:	48;	
								etherType	:	16;	
				}	
}	

header_type	ipv4_t	{	
				fields	{	
								version	:	4;	
								ihl	:	4;	
								diffserv	:	8;	
								totalLen	:	16;	
								iden)fica)on	:	16;	
								flags	:	3;	
								fragOffset	:	13;	
								pl	:	8;	
								protocol	:	8;	
								hdrChecksum	:	16;	
								srcAddr	:	32;	
								dstAddr:	32;	
				}	
}	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 12	

P4	VLAN	Header	Defini)on	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	

header_type	vlan_t	{	
					fields	{		
								pcp	:	3;	
								cfi	:	1;	
								vid	:	12;	
								ethertype	:	16;		
				}	
}		
	

13	

P4	Parser	
parser	start	{	
				return	parse_ethernet;	
}	
	
parser	parse_ethernet	{	
				extract(ethernet);	
				return	select(latest.etherType)	{	
								ETHERTYPE_IPV4	:	parse_ipv4;	
								default:	ingress;	
				}	
}	
	
parser	parse_ipv4	{	
				extract(ipv4);	
				return	ingress;	
}	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 14	

P4	IPv4	FIB	Table	Example	
table	ipv4_fib_lpm	{	
				reads	{	
								ingress_metadata.vrf	:	exact;	
								ipv4.dstAddr	:	lpm;	
				}	
				ac)ons	{	
								on_miss;	
								fib_hit_nexthop;	
				}	
				size	:	IPV4_LPM_TABLE_SIZE;	
}	
	
ac)on	fib_hit_nexthop(nexthop_index)	{	
				modify_field(ingress_metadata.nexthop_index,	nexthop_index);	
				subtract_from_field(ipv4.pl,	1);	
}	
	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	

control	ingress	{	
				if	(valid(ipv4))	{	
								apply(port_mapping);	
								apply(bd);	
								apply(ipv4_fib)	{	
												on_miss	{	
																apply(ipv4_fib_lpm);	
												}	
								}	
								apply(nexthop);	
				}	
}	

15	

Table	Types	
•  Exact:	value	==	table	entry	
–  E.g.	IPv4	host	route	

•  Ternary:	value	AND	mask	==	table	entry	
– Wildcard	

•  LPM:	Longest	Prefix	Match	
–  Special	case	of	ternary	(1111….11110000.....0000)	

•  Range:	low	entry	<=	value	<=	high	entry	
•  Valid:	table	entry	=	{true,	false}	
–  True:	header	field	is	valid	
–  False:	header	field	is	not	valid	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 16	

P4	Checksum	Support	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	

header	ipv4_t	ipv4;	
	
field_list	ipv4_checksum_list	{	
								ipv4.version;	
								ipv4.ihl;	
								ipv4.diffserv;	
								ipv4.totalLen;	
								ipv4.iden)fica)on;	
								ipv4.flags;	
								ipv4.fragOffset;	
								ipv4.pl;	
								ipv4.protocol;	
								ipv4.srcAddr;	
								ipv4.dstAddr;	
}	

field_list_calcula)on	ipv4_checksum	{	
				input	{	
								ipv4_checksum_list;	
				}	
				algorithm	:	csum16;	
				output_width	:	16;	
}	
	
calculated_field	ipv4.hdrChecksum		{	
				verify	ipv4_checksum;	
				update	ipv4_checksum;	
}	

header_type	ipv4_t	{	
				fields	{	
								version	:	4;	
								ihl	:	4;	
								diffserv	:	8;	
								totalLen	:	16;	
								iden)fica)on	:	16;	
								flags	:	3;	
								fragOffset	:	13;	
								pl	:	8;	
								protocol	:	8;	
								hdrChecksum	:	16;	
								srcAddr	:	32;	
								dstAddr:	32;	
				}	
}	

17	

Checksum	Algorithms	

•  XOR16	
•  CSUM16	
•  CRC16	
•  CRC32	
•  Programmable_CRC	
– Arbitrary	CRC	polynomial	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 18	

Addi)onal	P4	Features	

•  Counters	
– Type:	bytes	or	packets	
– Min-width	
– Satura)ng:	stop	coun)ng;	default	is	wrap	

•  Meters	
•  Registers	
•  Resubmit	(original	packet	+	metadata)	
•  Recirculate	(packet	a[er	egress	modifica)ons)	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 19	

P4	Control	Flow	

•  If/else	
•  +,		*,		-,		<<,		>>,		&,		|,		^	
•  ~,		-	
•  OR,		AND	
•  >,		>=,		==,		<=,		<,		!=	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 20	

Work	Flow	

•  Write	P4	program,	typically	these	source	files:	
–  foo.p4	
– headers.p4	
– parser.p4	

•  Convert	P4	program	to	JSON	configura)on	
•  Run	P4	so[ware	switch	with	JSON	config	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 21	

More	informa)on	

	
	

www.p4.org	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 22	

Thank	You	
	

Ronald	van	der	Pol	
SURFnet	

Ronald.vanderPol@rvdp.org	

TF-NGN	Reboot,	23-24	Feb	2016,	
Amsterdam	 23	

